Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Dev Biol ; 504: 12-24, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696353

RESUMO

The Estrogen Related Receptor (ERR) nuclear hormone receptor genes have a wide diversity of roles in vertebrate development. In embryos, ERR genes are expressed in several tissues, including the central and peripheral nervous systems. Here we seek to establish the evolutionary history of chordate ERR genes, their expression and their regulation. We examine ERR expression in mollusc, amphioxus and sea squirt embryos, finding the single ERR orthologue is expressed in the nervous system in all three, with muscle expression also found in the two chordates. We show that most jawed vertebrates and lampreys have four ERR paralogues, and that vertebrate ERR genes were ancestrally linked to Estrogen Receptor genes. One of the lamprey paralogues shares conserved expression domains with jawed vertebrate ERRγ in the embryonic vestibuloacoustic ganglion, eye, brain and spinal cord. Hypothesising that conserved expression derives from conserved regulation, we identify a suite of pan-vertebrate conserved non-coding sequences in ERR introns. We use transgenesis in lamprey and chicken embryos to show that these sequences are regulatory and drive reporter gene expression in the nervous system. Our data suggest an ancient association between ERR and the nervous system, including expression in cells associated with photosensation and mechanosensation. This includes the origin in the vertebrate common ancestor of a suite of regulatory elements in the 3' introns that drove nervous system expression and have been conserved from this point onwards.


Assuntos
Cordados , Embrião de Galinha , Animais , Cordados/genética , Evolução Molecular , Vertebrados , Sequência Conservada , Lampreias/genética , Lampreias/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Filogenia
3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446358

RESUMO

Nitric oxide (NO) is a key signaling molecule in almost all organisms and is active in a variety of physiological and pathological processes. Our understanding of the peculiarities and functions of this simple gas has increased considerably by extending studies to non-mammal vertebrates and invertebrates. In this review, we report the nitric oxide synthase (Nos) genes so far characterized in chordates and provide an extensive, detailed, and comparative analysis of the function of NO in the aquatic chordates tunicates, cephalochordates, teleost fishes, and amphibians. This comprehensive set of data adds new elements to our understanding of Nos evolution, from the single gene commonly found in invertebrates to the three genes present in vertebrates.


Assuntos
Cordados , Animais , Cordados/genética , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase/genética , Invertebrados , Vertebrados
4.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047242

RESUMO

The vertebrate intestinal system consists of separate segments that remarkably differ in morphology and function. However, the origin of intestinal segmentation remains unclear. In this study, we investigated the segmentation of the intestine in a tunicate ascidian species, Ciona savignyi, by performing RNA sequencing. The gene expression profiles showed that the whole intestine was separated into three segments. Digestion, ion transport and signal transduction, and immune-related pathway genes were enriched in the proximal, middle, and distal parts of the intestine, respectively, implying that digestion, absorption, and immune function appear to be regional specializations in the ascidian intestine. We further performed a multi-species comparison analysis and found that the Ciona intestine showed a similar gene expression pattern to vertebrates, indicating tunicates and vertebrates might share the conserved intestinal functions. Intriguingly, vertebrate pancreatic homologous genes were expressed in the digestive segment of the Ciona intestine, suggesting that the proximal intestine might play the part of pancreatic functions in C. savignyi. Our results demonstrate that the tunicate intestine can be functionally separated into three distinct segments, which are comparable to the corresponding regions of the vertebrate intestinal system, offering insights into the functional evolution of the digestive system in chordates.


Assuntos
Cordados , Ciona intestinalis , Urocordados , Animais , Urocordados/genética , Transcriptoma , Cordados/genética , Vertebrados/genética , Intestinos , Ciona intestinalis/genética , Filogenia
5.
J Mol Evol ; 91(2): 192-203, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651963

RESUMO

Type IB topoisomerases relax the torsional stress associated with DNA metabolism in the nucleus and mitochondria and constitute important molecular targets of anticancer drugs. Vertebrates stand out among eukaryotes by having two Type IB topoisomerases acting specifically in the nucleus (TOP1) and mitochondria (TOP1MT). Despite their major importance, the origin and evolution of these paralogues remain unknown. Here, we examine the molecular evolutionary processes acting on both TOP1 and TOP1MT in Chordata, taking advantage of the increasing number of available genome sequences. We found that both TOP1 and TOP1MT evolved under strong purifying selection, as expected considering their essential biological functions. Critical active sites, including those associated with resistance to anticancer agents, were found particularly conserved. However, TOP1MT presented a higher rate of molecular evolution than TOP1, possibly related with its specialized activity on the mitochondrial genome and a less critical role in cells. We could place the duplication event that originated the TOP1 and TOP1MT paralogues early in the radiation of vertebrates, most likely associated with the first round of vertebrate tetraploidization (1R). Moreover, our data suggest that cyclostomes present a specialized mitochondrial Type IB topoisomerase. Interestingly, we identified two missense mutations replacing amino acids in the Linker region of TOP1MT in Neanderthals, which appears as a rare event when comparing the genome of both species. In conclusion, TOP1 and TOP1MT differ in their rates of evolution, and their evolutionary histories allowed us to better understand the evolution of chordates.


Assuntos
Cordados , DNA Mitocondrial , Animais , DNA Mitocondrial/genética , Cordados/genética , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , Mitocôndrias/genética , Núcleo Celular/genética
6.
Int J Biol Macromol ; 229: 401-412, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36592853

RESUMO

The glycoprotein hormone (GPH) system is fundamentally significant in regulating the physiology of chordates, such as thyroid activity and gonadal function. However, the knowledge of the GPH system in the primitive chordate ascidian species is largely lacking. Here, we reported an ancestral GPH system in the ascidian (Styela clava), which consists of GPH α subunit (Sc-GPA2), GPH ß subunit (Sc-GPB5), and the cognate leucine-rich repeat-containing G protein-coupled receptor (Sc-GPHR). Comparative structure analysis revealed that distinct from vertebrate GPH ß subunits, Sc-GPB5 was less conserved, showing an atypical N-terminal sequence with a type II transmembrane domain instead of a typical signal peptide. By investigating the presence of recombinant Sc-GPA2 and Sc-GPB5 in cell lysates and culture media of HEK293T cells, we confirmed that these two subunits could be secreted out of the cells via distinct secretory pathways. The deglycosylation experiments demonstrated that N-linked glycosylation only occurred on the conserved cysteine residue (N78) of Sc-GPA2, whereas Sc-GPB5 was non-glycosylated. Although Sc-GPB5 exhibited distinct topology and biochemical properties in contrast to its chordate counterparts, it could still interact with Sc-GPA2 to form a heterodimer. The Sc-GPHR was then confirmed to be activated by tethered Sc-GPA2/GPB5 heterodimer on the Gs-cAMP pathway, suggesting that Sc-GPA2/GPB5 heterodimer-initiated Gs-cAMP signaling pathway is evolutionarily conserved in chordates. Furthermore, in situ hybridization and RT-PCR results revealed the co-expression patterns of Sc-GPA2 and Sc-GPB5 with Sc-GPHR transcripts, respectively in ascidian larvae and adults, highlighting the potential functions of Sc-GPA2/GPB5 heterodimer as an autocrine/paracrine neurohormone in regulating metamorphosis of larvae and physiological functions of adults. Our study systematically investigated the GPA2/GPB5-GPHR system in ascidian for the first time, which offers insights into understanding the function and evolution of the GPH system within the chordate lineage.


Assuntos
Cordados , Urocordados , Humanos , Animais , Cordados/genética , Cordados/metabolismo , Urocordados/genética , Urocordados/metabolismo , Células HEK293 , Sequência de Aminoácidos , Glicoproteínas/química , Subunidade alfa de Hormônios Glicoproteicos/química
7.
Dev Biol ; 496: 52-62, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717049

RESUMO

Ambulacrarians (echinoderms and hemichordates) are a sister group to chordates; thus, their larval cell-types may provide clues about evolution of chordate body plans. Although most genic information accumulated to date pertains to sea urchin embryogenesis, starfish embryogenesis represents a more ancestral mode than that of sea urchins. We performed single-cell RNA-seq analysis of cell-types from gastrulae and bipinnarial larvae of the starfish, Patiria pectinifera, and categorized them into 22 clusters, each of which is composed of cells with specific, shared profiles of development-relevant gene expression. Oral and aboral ectoderm, apical plate, hindgut or archenteron, midgut or intestine, pharynx, endomesoderm, stomodeum, and mesenchyme of the gastrulae, and neurons, ciliary bands, enterocoel and muscle of larvae were characterized by expression profiles of at least two relevant transcription factor genes and signaling molecular genes. Expression of Hox2, Hox7, Hox9/10, and Hox11/13b was detected in cells of clusters that form the larval enterocoel. By comparing homologous gene expression profiles in chordate embryos, we discuss and propose how the chordate body plan evolved from a deuterostome ancestor, from which the echinoderm body plan also evolved.


Assuntos
Cordados , Animais , Cordados/genética , Estrelas-do-Mar/genética , Larva/genética , Análise da Expressão Gênica de Célula Única , Ouriços-do-Mar/genética
8.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36537201

RESUMO

Asymmetries are essential for proper organization and function of organ systems. Genetic studies in bilaterians have shown signaling through the Nodal/Smad2 pathway plays a key, conserved role in the establishment of body asymmetries. Although the main molecular players in the network for the establishment of left-right asymmetry (LRA) have been deeply described in deuterostomes, little is known about the regulation of Nodal signaling in spiralians. Here, we identified orthologs of the egf-cfc gene, a master regulator of the Nodal pathway in vertebrates, in several invertebrate species, which includes the first evidence of its presence in non-deuterostomes. Our functional experiments indicate that despite being present, egf-cfc does not play a role in the establishment of LRA in gastropods. However, experiments in zebrafish suggest that a single amino acid mutation in the egf-cfc gene in at least the common ancestor of chordates was the necessary step to induce a gain of function in LRA regulation. This study shows that the egf-cfc gene likely appeared in the ancestors of deuterostomes and "protostomes", before being adopted as a mechanism to regulate the Nodal pathway and the establishment of LRA in some lineages of deuterostomes.


Assuntos
Cordados , Fator de Crescimento Epidérmico , Animais , Padronização Corporal/genética , Cordados/genética , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/química , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Peixe-Zebra/genética , Proteínas Ligadas por GPI/metabolismo
9.
J Mol Evol ; 90(6): 418-428, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36181519

RESUMO

Vertebrate blood coagulation is controlled by a cascade containing more than 20 proteins. The cascade proteins are found in the blood in their zymogen forms and when the cascade is triggered by tissue damage, zymogens are activated and in turn activate their downstream proteins by serine protease activity. In this study, we examined proteomes of 21 chordates, of which 18 are vertebrates, to reveal the modular evolution of the blood coagulation cascade. Additionally, two Arthropoda species were used to compare domain arrangements of the proteins belonging to the hemolymph clotting and the blood coagulation cascades. Within the vertebrate coagulation protein set, almost half of the studied proteins are shared with jawless vertebrates. Domain similarity analyses revealed that there are multiple possible evolutionary trajectories for each coagulation protein. During the evolution of higher vertebrate clades, gene and genome duplications led to the formation of other coagulation cascade proteins.


Assuntos
Fatores de Coagulação Sanguínea , Cordados , Animais , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Vertebrados/genética , Coagulação Sanguínea/genética , Cordados/genética , Genoma
10.
Sci China Life Sci ; 65(12): 2539-2551, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35696018

RESUMO

Olfactory receptors are poorly annotated for most genome-sequenced chordates. To address this deficiency, we developed a nhmmer-based olfactory receptor annotation tool Genome2OR ( https://github.com/ToHanwei/Genome2OR.git ), and used it to process 1,695 sequenced chordate genomes in the NCBI Assembly database as of January, 2021. In total, 765,248 olfactory receptor genes were annotated, with 404,426 functional genes and 360,822 pseudogenes, which represents a four-fold increase in the number of annotated olfactory receptors. Based on the annotation data, we built a database called Chordata Olfactory Receptor Database (CORD, https://cord.ihuman.shanghaitech.edu.cn ) for archiving, analysing and disseminating the data. Beyond the primary data, we offer derivative information, including pictures of species, cross references to public databases, structural models, sequence similarity networks and sequence profiles in the CORD. Furthermore, we did brief analyses on these receptors, including building a huge protein sequence similarity network covering all receptors in the database, and clustering them into 20 communities, classifying the 20 communities into three categories based on their presences/absences in ray-finned fish and/or lobe-finned fish. We infer that olfactory receptors should have unique activation and desensitization mechanisms by analysing their sequences and structural models. We believe the CORD can benefit the researchers and the general public who are interested in olfaction.


Assuntos
Cordados , Receptores Odorantes , Animais , Receptores Odorantes/genética , Cordados/genética , Pseudogenes , Sequência de Aminoácidos , Genoma/genética
11.
Elife ; 112022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35042580

RESUMO

Gap junction channels are formed by two unrelated protein families. Non-chordates use the primordial innexins, while chordates use connexins that superseded the gap junction function of innexins. Chordates retained innexin-homologs, but N-glycosylation prevents them from forming gap junctions. It is puzzling why chordates seem to exclusively use the new gap junction protein and why no chordates should exist that use non-glycosylated innexins to form gap junctions. Here, we identified glycosylation sites of 2388 innexins from 174 non-chordate and 276 chordate species. Among all chordates, we found not a single innexin without glycosylation sites. Surprisingly, the glycosylation motif is also widespread among non-chordate innexins indicating that glycosylated innexins are not a novelty of chordates. In addition, we discovered a loss of innexin diversity during early chordate evolution. Most importantly, lancelets, which lack connexins, exclusively possess only one highly conserved innexin with one glycosylation site. A bottleneck effect might thus explain why connexins have become the only protein used to form chordate gap junctions.


Assuntos
Cordados/genética , Conexinas/genética , Evolução Molecular , Junções Comunicantes/genética , Animais , Junções Comunicantes/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34862323

RESUMO

In less than 25 y, the field of animal genome science has transformed from a discipline seeking its first glimpses into genome sequences across the Tree of Life to a global enterprise with ambitions to sequence genomes for all of Earth's eukaryotic diversity [H. A. Lewin et al., Proc. Natl. Acad. Sci. U.S.A. 115, 4325-4333 (2018)]. As the field rapidly moves forward, it is important to take stock of the progress that has been made to best inform the discipline's future. In this Perspective, we provide a contemporary, quantitative overview of animal genome sequencing. We identified the best available genome assemblies in GenBank, the world's most extensive genetic database, for 3,278 unique animal species across 24 phyla. We assessed taxonomic representation, assembly quality, and annotation status for major clades. We show that while tremendous taxonomic progress has occurred, stark disparities in genomic representation exist, highlighted by a systemic overrepresentation of vertebrates and underrepresentation of arthropods. In terms of assembly quality, long-read sequencing has dramatically improved contiguity, whereas gene annotations are available for just 34.3% of taxa. Furthermore, we show that animal genome science has diversified in recent years with an ever-expanding pool of researchers participating. However, the field still appears to be dominated by institutions in the Global North, which have been listed as the submitting institution for 77% of all assemblies. We conclude by offering recommendations for improving genomic resource availability and research value while also broadening global representation.


Assuntos
Artrópodes/genética , Bases de Dados Genéticas , Genoma/genética , Genômica , Vertebrados/genética , Animais , Cordados/genética , Sequenciamento de Nucleotídeos em Larga Escala , Invertebrados/genética , Análise de Sequência de DNA
14.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943900

RESUMO

Glycine is an important neurotransmitter in vertebrates, performing both excitatory and inhibitory actions. Synaptic levels of glycine are tightly controlled by the action of two glycine transporters, GlyT1 and GlyT2, located on the surface of glial cells and neurons, respectively. Only limited information is available on glycinergic neurotransmission in invertebrates, and the evolution of glycinergic neurotransmission is poorly understood. Here, by combining phylogenetic and gene expression analyses, we characterized the glycine transporter complement of amphioxus, an important invertebrate model for studying the evolution of chordates. We show that amphioxus possess three glycine transporter genes. Two of these (GlyT2.1 and GlyT2.2) are closely related to GlyT2 of vertebrates, whereas the third (GlyT) is a member of an ancestral clade of deuterostome glycine transporters. GlyT2.2 expression is predominantly non-neural, whereas GlyT and GlyT2.1 are widely expressed in the amphioxus nervous system and are differentially expressed, respectively, in neurons and glia. Vertebrate glycinergic neurons express GlyT2 and glia GlyT1, suggesting that the evolution of the chordate glycinergic system was accompanied by a paralog-specific inversion of gene expression. Despite this genetic divergence between amphioxus and vertebrates, we found strong evidence for conservation in the role glycinergic neurotransmission plays during larval swimming, the implication being that the neural networks controlling the rhythmic movement of chordate bodies may be homologous.


Assuntos
Evolução Molecular , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Glicina/genética , Transmissão Sináptica/genética , Animais , Cordados/genética , Cordados/crescimento & desenvolvimento , Regulação da Expressão Gênica/genética , Variação Genética/genética , Glicina/metabolismo , Anfioxos/genética , Larva/genética , Larva/crescimento & desenvolvimento , Neuroglia/metabolismo , Neurônios/metabolismo , Filogenia
15.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943899

RESUMO

The specification of the endostyle in non-vertebrate chordates and of the thyroid gland in vertebrates are fundamental steps in the evolution of the thyroid hormone (TH) signaling to coordinate development and body physiology in response to a range of environmental signals. The physiology and biology of TH signaling in vertebrates have been studied in the past, but a complete understanding of such a complex system is still lacking. Non-model species from non-vertebrate chordates may greatly improve our understanding of the evolution of this complex endocrine pathway. Adaptation of already existing proteins in order to perform new roles is a common feature observed during the course of evolution. Through sequence similarity approaches, we investigated the presence of bona fide thyroid peroxidase (TPO), iodothyronine deiodinase (DIO), and thyroid hormone receptors (THRs) in non-vertebrate and vertebrate chordates. Additionally, we determined both the conservation and divergence degrees of functional domains at the protein level. This study supports the hypothesis that non-vertebrate chordates have a functional thyroid hormone signaling system and provides additional information about its possible evolutionary adaptation.


Assuntos
Evolução Biológica , Iodeto Peroxidase/genética , Receptores dos Hormônios Tireóideos/genética , Hormônios Tireóideos/genética , Sequência de Aminoácidos/genética , Animais , Cefalocordados/genética , Cordados/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Alinhamento de Sequência , Transdução de Sinais/genética , Glândula Tireoide/metabolismo , Urocordados/genética , Vertebrados/genética
16.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34725164

RESUMO

Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical.


Assuntos
Evolução Biológica , Cordados/genética , Cromossomos de Mamíferos , Genoma , Animais , Sequência de Bases , Sequência Conservada
17.
ScientificWorldJournal ; 2021: 1041818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803523

RESUMO

Prior to this study, we discovered a protein characterized by many different amino acid sequences with the same number of amino acid residues. This turned out to be a unique cytochrome b, in which 1048 molecules out of 1689 contain 379 amino acid residues. A detailed study of the occurrence of this protein in living organisms at different taxonomic levels (from biological domains to biological orders of animals) has been carried out in the work presented here. We found that the main part of all b cytochromes is present in eukaryotes (99.2%), in biological kingdoms (95.9% in animals), in biological phylums (97.5% in chordates), and in biological classes (79.7% in mammals). Withal, this protein, containing 379 amino acid residues and characterized by many different amino acid sequences, is found only in eukaryotes (100%), only in animals (100%) and mainly in mammals (81.1%). Thus, a representative that has cytochrome b with a corresponding number of amino acid residues has not yet been identified among archaea and prokaryotes, while it is common in representatives of different biological types, classes, and orders of animals. It is believed that the structural diversity of a given protein within the same length and its one function of participation in the process of electron transfer relate to the physicochemical features of the extra- and intramembrane fragments of the polypeptide chain of this protein.


Assuntos
Citocromos b/genética , Proteínas Mitocondriais/genética , Sequência de Aminoácidos/genética , Animais , Archaea/genética , Bactérias/genética , Cordados/genética , Transporte de Elétrons/genética , Eucariotos/genética , Mamíferos/genética , Filogenia
18.
Mol Biol Evol ; 38(10): 4435-4448, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34146103

RESUMO

To investigate novel patterns and processes of protein evolution, we have focused in the metallothioneins (MTs), a singular group of metal-binding, cysteine-rich proteins that, due to their high degree of sequence diversity, still represents a "black hole" in Evolutionary Biology. We have identified and analyzed more than 160 new MTs in nonvertebrate chordates (especially in 37 species of ascidians, 4 thaliaceans, and 3 appendicularians) showing that prototypic tunicate MTs are mono-modular proteins with a pervasive preference for cadmium ions, whereas vertebrate and cephalochordate MTs are bimodular proteins with diverse metal preferences. These structural and functional differences imply a complex evolutionary history of chordate MTs-including de novo emergence of genes and domains, processes of convergent evolution, events of gene gains and losses, and recurrent amplifications of functional domains-that would stand for an unprecedented case in the field of protein evolution.


Assuntos
Cordados , Urocordados , Animais , Cordados/genética , Metalotioneína/genética , Urocordados/genética , Urocordados/metabolismo
19.
Mol Biol Evol ; 38(7): 2915-2929, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33744972

RESUMO

Serine protease inhibitors (serpins) are found in all kingdoms of life and play essential roles in multiple physiological processes. Owing to the diversity of the superfamily, phylogenetic analysis is challenging and prokaryotic serpins have been speculated to have been acquired from Metazoa through horizontal gene transfer due to their unexpectedly high homology. Here, we have leveraged a structural alignment of diverse serpins to generate a comprehensive 6,000-sequence phylogeny that encompasses serpins from all kingdoms of life. We show that in addition to a central "hub" of highly conserved serpins, there has been extensive diversification of the superfamily into many novel functional clades. Our analysis indicates that the hub proteins are ancient and are similar because of convergent evolution, rather than the alternative hypothesis of horizontal gene transfer. This work clarifies longstanding questions in the evolution of serpins and provides new directions for research in the field of serpin biology.


Assuntos
Evolução Molecular , Família Multigênica , Filogenia , Serpinas/genética , Animais , Bactérias/genética , Cordados/genética , Invertebrados/genética , Plantas/genética
20.
Mol Biol Evol ; 38(1): 215-228, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32770221

RESUMO

Telomerase RNA (TR) is a noncoding RNA essential for the function of telomerase ribonucleoprotein. TRs from vertebrates, fungi, ciliates, and plants exhibit extreme diversity in size, sequence, secondary structure, and biogenesis pathway. However, the evolutionary pathways leading to such unusual diversity among eukaryotic kingdoms remain elusive. Within the metazoan kingdom, the study of TR has been limited to vertebrates and echinoderms. To understand the origin and evolution of TR across the animal kingdom, we employed a phylogeny-guided, structure-based bioinformatics approach to identify 82 novel TRs from eight previously unexplored metazoan phyla, including the basal-branching sponges. Synthetic TRs from two representative species, a hemichordate and a mollusk, reconstitute active telomerase in vitro with their corresponding telomerase reverse transcriptase components, confirming that they are authentic TRs. Comparative analysis shows that three functional domains, template-pseudoknot (T-PK), CR4/5, and box H/ACA, are conserved between vertebrate and the basal metazoan lineages, indicating a monophyletic origin of the animal TRs with a snoRNA-related biogenesis mechanism. Nonetheless, TRs along separate animal lineages evolved with divergent structural elements in the T-PK and CR4/5 domains. For example, TRs from echinoderms and protostomes lack the canonical CR4/5 and have independently evolved functionally equivalent domains with different secondary structures. In the T-PK domain, a P1.1 stem common in most metazoan clades defines the template boundary, which is replaced by a P1-defined boundary in vertebrates. This study provides unprecedented insight into the divergent evolution of detailed TR secondary structures across broad metazoan lineages, revealing ancestral and later-diversified elements.


Assuntos
Cordados/genética , Evolução Molecular , Invertebrados/genética , Filogenia , RNA/genética , Telomerase/genética , Animais , RNA/química , Telomerase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...